

Abschlussbericht Energieaudit gemäß DIN EN 16247-1

Mustermilch AG, Hauptsitz Karlsruhe

Energetische Analyse vom 16.05.2018

Standort: Hauptsitz Karlsruhe

Molkereiweg 1-3 76189 Karlsruhe

Ansprechpartner: Axel Frischmilch

+49 721 942697-0

Federführender Berater: Dipl.-Ing. Paul Prüfmeister

Energy Master Advisers GmbH & Co KG

Beraterstraße 42 76227 Karlsruhe

Die Erfassung und Berichterstellung wurde unterstützt von:

Inhaltsverzeichnis

1 Zusammenfassung	4
2 Hintergrund	6
2.1 Informationen zum Unternehmen	6
2.2 Informationen zum Auditor und Methodik der Vorgehensweise	6
2.3 Kontext der Energieberatung	7
2.4 Beschreibung des betrachteten Objekts	7
2.4.1 Gebäude	
2.4.1.1 Verwaltungsgebäude	7
2.4.1.2 Garage für Milchtank-Lastwagen	8
2.4.1.3 Zwischenlager für Produkte	8
2.4.1.4 Produktions- und Abfüllstätte	9
2.5 Relevante Normen und Verordnungen	11
3 Darstellung des IST-Zustands	12
3.1 Energiebezug Jahr 2017	12
3.2 Selbsterzeugte Energie Jahr 2017	
3.3 Energieeinsatz Jahr 2017	
3.4 Energieverbraucheranalyse	14
3.4.1 Verbraucherstrukturen	14
3.4.2 Energieverbrauch Jahr 2017	16
3.4.3 Messwesen	19
3.5 Energiebilanz	19
3.5.1 Energiebilanz nach Energieträgern Jahr 2017	19
3.6 Betriebliche Informationen	19
3.7 Kennzahlen (EnPI's)	20
3.8 Anpassungsfaktoren	21
4 Möglichkeiten zur Verbesserung der Energieeffizienz	23
4.1 Schwerpunkte	23
4.1.1 Gebäudehülle	23
4.1.2 Beleuchtung	
4.1.3 Produktionsprozesse und Anlagen	24
4.1.4 Transport	25
4.1.5 Klima- und Kälteanlagen	26
4.2 Zusammenfassung der Maßnahmen	27
4.3 Maßnahmen	
4.3.1 Abwärmenutzung/WRG	
4.3.1.1 M1: Abwärmenutzung aus den Chillern der Klimakälteerzeugung	
4.3.2 Transport	
4.3.2.1 M2: Austausch betagter Milchtanklastwagen	
4.3.3 Klima- und Kälteanlagen	
4.3.3.1 M3: Verringerung der Kühllager-Fläche durch kürzere Lagerzeiten	
4.4 CO ₂ -Einsparung	
4.5 Vorgehensweise	
4.6 Maßnahmenplan	
5 Schlussfolgerung	
6 Nachweis und Erklärungen	39

	6.1 Ortsbegehungen	39
	6.2 Nachweis der Beratungsleistungen	40
	6.3 Erklärung des Unternehmens	41
	6.4 Erklärung des Auditors	42
7	Anhänge	43
	7.1 Gebäudeaufteilung und Verbraucherzugehörigkeit	
	7.1.1 Verwaltungsgebäude	43
	7.1.2 Garage für Milchtank-Lastwagen	43
	7.1.3 Zwischenlager für Produkte	43
	7.1.4 Produktions- und Abfüllstätte	44
	7.2 Bilder	45
	7.3 Verbraucher	
	7.3.1 Errechnete Verbrauchswerte	52
	7.3.2 Verbraucher Bilder	55
	7.4 CO ₂ -Bilanz	58
	7.5 Verbraucherstrukturen im Detail	
	7.6 Hinterlegte Dokumente	

1 Zusammenfassung

Für den Standort Hauptsitz Karlsruhe des Unternehmens Mustermilch AG konnten 5 Bereiche identifiziert werden, in denen sich Energie einsparen lässt. Es handelt sich dabei um die Bereiche Gebäudehülle, Transport, Abwärmenutzung/WRG, Strom- und Wärmeerzeugung sowie Warmwasserversorgung.

Gebäudehülle

Bei der Gebäudehülle wurde insbesondere das (eigene) Verwaltungsgebäude betrachtet, da dies das einzige nicht-gemietete Gebäude ist. Bei den anderen, angemieteten Gebäuden besteht keine Möglichkeit zur Durchführung von Effizienzmaßnahmen.

Transport

Praktisch täglich sind bis zu fünf Milchtanklastwagen unterwegs, die in der Region im Umkreis von ca. 60km die Milch von den Produktionsbetrieben und Bauernhöfen einsammeln. Das Transportwesen mit den im Einsatz befindlichen Milchtanklastwagen bildet hierbei einen relevanten Anteil am Gesamtenergieverbrauch. Das höchste Einsparpotenzial liegt hierbei in der Erneuerung älterer Fahrzeuge, da der Kraftstoffverbrauch moderner Tanklastwagen deutlich geringer ist.

Abwärmenutzung/WRG

Speziell in den Wintermonaten ist es sehr sinnvoll die Abwärme größerer Anlagen für Heizungssysteme zu nutzen. Die verwendete Kälteanlage ist hierfür perfekt geeignet, da sie sich in unmittelbarer Nähe zum zentralen Heizungssystem befindet.

Strom- und Wärmeerzeugung

Bei der Strom und Wärmeerzeugung ist durch relativ wenig und einfache Maßnahmen ein hohes Einsparpotenzial erreichbar:

Mit nur drei Maßnahmen bei der Beleuchtung, in der Türsteuerung und bei der Druckluft können 3445 kWh pro Jahr eingespart werden.

Warmwasserversorgung

Die Warmwasserversorgung des Betriebsgebäudes kann mittels Durchlauferhitzer etwas günstiger bewerkstelligt werden. Der Umbau würde Energie einsparen sowie den Komfort erhöhen und den Wasserverbrauch senken. Da schneller warmes Wasser an den Zapfstellen zur Verfügung steht, muss kein kaltes Wasser mehr ausgelaufen lassen werden.

Die nachfolgende Tabelle listet alle definierten Maßnahmen auf:

	Maßnahmenbezeichnung	geplant für
M1	Abwärmenutzung aus den Chillern der Klimakälteerzeugung	Dez 2018
M2	Austausch betagter Milchtanklastwagen	Jan 2019
М3	Verringerung der Kühllager-Fläche durch kürzere Lagerzeiten	Okt 2018

Die geschätzten Einsparungen an Endenergie und CO2 sowie die Investitionskosten werden in der

folgenden Tabelle dargestellt. Die Maßnahmen sind nach Ihrer Priorität aufgeführt, welche sich ihrerseits aus dem höchsten CO₂-Einsparpotential ergibt:

	Einsparung pro Jahr				
Maßnahme	€	kWh	CO ₂ [kg]	Investitionsvolumen [€]	Nutzungsdauer [a]
M1	6.412	130.000	31.980	30.001	8
M2	10.792	100.000	26.200	140.000	25
M3	521	5.000	2.901	0	20
Summe	17.725	235.000	61.081	170.001	

2 Hintergrund

2.1 Informationen zum Unternehmen

Name	Mustermilch AG
Telefon	+49 721 942697-0
Adresse	Molkereiweg 1-3, 76189 Karlsruhe
Branche	Herstellung von Speiseeis (10.52)
Ansprechpartner für Audit	Axel Frischmilch
Anzahl Mitarbeiter	350

Die Mustermilch AG, hervorgegangen aus der 1923 gegründeten Milch- und Kaltsüßspeisen Vereinigung Karlsruhe Süd, widmet sich seit jeher der Herstellung exquisiter Süßspeisen.

2.2 Informationen zum Auditor und Methodik der Vorgehensweise

Das Audit wurde durchgeführt von:

Die Beratung wurde durchgeführt von Energy Master Advisers GmbH & Co KG. Die EMA ist ein interdisziplinär aufgestellter Beratungszirkel, der auf die unterschiedlichen Kompetenzen der einzelnen Berater zugreift, um sicher zu stellen, dass die Kunden in allen Bereichen die bestmögliche Beratung erhalten.

Die Beratung wurde federführend von Dipl.-Ing. Paul Prüfmeister durchgeführt.

Herr Prüfmeister ist Dipl-Ingenieur mit 90-jähriger Erfahrung in Energieberatung und Auditierung. Er wird auch der Meister des Prüfens genannt.

BAFA-Nummer: 42424242

Als Co-Auditoren waren folgende Personen an der Beratung beteiligt:

- Dipl.-Ing. Stefan Scharfseher (BAFA-Nummer: 13371337)
 Herr Scharfseher ist Dipl-Ingenieur und mit seiner langjährigen Erfahrung in
 Energieberatung und Auditierung vor allem dafür bekannt, dass er durch seinen scharfen
 Blick jede noch so versteckte energetische Optimierungsmöglichkeit offenlegt.
- Dipl.-Ing. Gundolf Ganzgenau (BAFA-Nummer: 42421337)
 Herr Ganzgenau ist Dipl-Ingenieur mit langjähriger Erfahrung in Energieberatung und Auditierung. Beim kontinuierlichen Monitoring von Energieverbräuchen verlässt er sich schon lange auf das Premium Energiemanagementsystem enerchart und nimmt es dabei mehr als nur genau.

Methodik der Vorgehensweise

Systematische Untersuchung der Gebäudehülle, Langzeit-Messung der Anlagentechnik mit Hochrechnung des Jahresverbrauchs, Untersuchung der energetischen Schwachstellen.

2.3 Kontext der Energieberatung

Die Beratung wurde im Zeitraum 04.04.2018 bis 16.05.2018 durchgeführt.

Energieaudit zur Erfüllung der Verpflichtungen aus §§ 8 ff. EDL-G für Nicht-KMU und für verbundene Unternehmen. Audit mit Vor-Ort Begehung unter Begleitung des Energiebeauftragten mit den Schwerpunkten Gebäudehülle, Kühltechnik und Transport.

2.4 Beschreibung des betrachteten Objekts

Der im Zuge dieses Audits betrachtete Standort "Hauptsitz Karlsruhe" ist im Wesentlichen zuständig für die Produktion des Speiseeises sowie für die Koordination der gesamten Logistik des Unternehmens.

2.4.1 Gebäude

Im Folgenden werden die im Kontext dieser Auditierung relevanten Gebäude des betrachteten Objektes zusammenfassend beschrieben. Eine detaillierte Auflistung der zugehörigen Verbraucher befindet sich im Anhang.

2.4.1.1 Verwaltungsgebäude

Das Verwaltungsgebäude verfügt über eine eigene Heizungsanlage mit zwei BHKWs. Im Erdgeschoss befindet sich ein Rechenzentrum und der Empfang. Im Obergeschoss des Gebäudes befinden sich Büroräume.

Abb. 1: Das Verwaltungsgebäude

Detailangaben zum Gebäude

Adresszeile/Standort	Molkereiweg 1
Gültigkeit	ab 2012
Bundesland	Baden-Württemberg
Hauptnutzung	Verwaltungsgebäude mit erhöhter technischer Ausstattung / Ausrüstung / Funktion

bedarfsorientierter Energieausweis	ja
Baujahr	2012
Netto-Grundfläche	2.500,00 qm
Brutto-Rauminhalt	37.500 Kubikmeter
Anzahl Nutzungseinheiten	7 NE
Anzahl der Vollgeschosse	2
Angaben zum Dachgeschoss	beheizt
Angaben zum Keller	beheizt
Jahr der letzten Modernisierung	2012
Baujahr des Wärmeerzeugers	2012
Baujahr der Klimaanlage	2012

2.4.1.2 Garage für Milchtank-Lastwagen

Die Garage wird zur Unterbringung und Wartung der Milchtank-Lastwagen verwendet. Dafür steht eine Reinigungs- und Desinfektionsanlage zu Verfügung. Die Garage besitzt eine eigene Heizungsanlage.

Detailangaben zum Gebäude

Detailarigabeli zurii Gebaude	
Adresszeile/Standort	Molkereiweg 1-3
Gültigkeit	ab 2012
Bundesland	Baden-Württemberg
Hauptnutzung	KFZ-Garagen
Baujahr	1978
Netto-Grundfläche	6.800,00 qm
Brutto-Rauminhalt	30.600 Kubikmeter
Anzahl Nutzungseinheiten	1 NE
Anzahl der Vollgeschosse	1
Angaben zum Dachgeschoss	nicht vorhanden
Angaben zum Keller	nicht beheizt
Jahr der letzten Modernisierung	2004
Baujahr des Wärmeerzeugers	2008

2.4.1.3 Zwischenlager für Produkte

In der Einrichtung werden Rohstoffe und Endprodukte zwischengelagert. Hierfür wird eine Kälteanlage betrieben.

Abb. 2: Zwischenlager innerhalb der Produktionshalle

Detailangaben zum Gebäude

Detailangaben zum Gebaude		
Adresszeile/Standort	Molkereiweg 3	
Gültigkeit	ab 2003	
Bundesland	Baden-Württemberg	
Hauptnutzung	Kühlhäuser	
bedarfsorientierter Energieausweis	ja	
Baujahr	2012	
Netto-Grundfläche	3.000,00 qm	
Brutto-Rauminhalt	12.000 Kubikmeter	
Anzahl Nutzungseinheiten	1 NE	
Anzahl der Vollgeschosse	1	
Angaben zum Dachgeschoss	nicht vorhanden	
Angaben zum Keller	nicht beheizt	
Jahr der letzten Modernisierung	2012	
Baujahr der Klimaanlage	2012	

2.4.1.4 Produktions- und Abfüllstätte

In dieser Halle wird die Produktion, Abfüllung und Verpackung der hergestellten Produkte durchgeführt. Das Gebäude wird nicht beheizt.

Abb. 3: Verpackungsanlage innerhalb der Produktionshalle

Abb. 4: Multitube Behälter der Produktionsabteilung

Detailangaben zum Gebäude

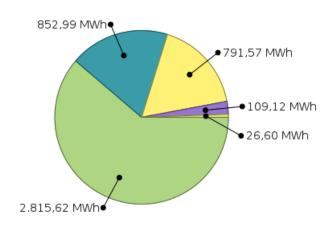
Adresszeile/Standort	Molkereiweg 2
Gültigkeit	ab 2013
Bundesland	Baden-Württemberg
Hauptnutzung	Industrielle Produktionsstätten

bedarfsorientierter Energieausweis	ja
Baujahr	2014
Netto-Grundfläche	5.000,00 qm
Brutto-Rauminhalt	30.000 Kubikmeter
Anzahl Nutzungseinheiten	1 NE
Anzahl der Vollgeschosse	1
Angaben zum Dachgeschoss	nicht vorhanden
Angaben zum Keller	nicht vorhanden
Jahr der letzten Modernisierung	2012

2.5 Relevante Normen und Verordnungen

Der Bericht wurde nach Vorgaben der Norm DIN EN 16247-1 erstellt.

Für die Begutachtung der Gebäude und Anlagen DIN 18599 bzw. im vereinfachten Verfahren freie Berechnung in Anlehnung an DIN 4108.


3 Darstellung des IST-Zustands

3.1 Energiebezug Jahr 2017

	MWh	€ (Verbrauch)	€ (Fix)	€ (Gesamt)/MWh	Anteil
Strom	2.815,62	575.010,00	100,00	204,26	61,26 %
Diesel	852,99	74.991,00	800,00	88,85	18,56 %
Erdgas	791,57	42.090,00	25,00	53,20	17,22 %
Heizöl (EL)	109,12	6.000,00	33,00	55,29	2,37 %
Benzin E10	26,60	2.214,00	800,00	113,32	0,58 %
Gesamt	4.595,90	700.305,00	1.758,00	152,76	100,00 %

Energiebezug Jahr 2017

3.2 Selbsterzeugte Energie Jahr 2017

SEPhoto1

Baujahr: 2005

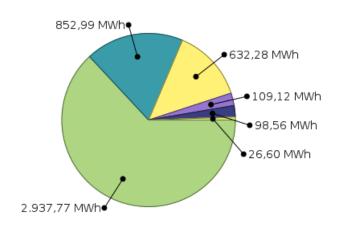
Selbsterzeugte über Photovoltaik

Wert der selbstverbrauchten Energie	25.150 €
Einnahmen durch eingespeiste Energie	216 €
Wert der erzeugten Energie	25.365 €
Energiebezugskosten	0 €
Wartungs- und Betriebskosten	200 €
Ersparnis	25.165 €
selbstverbrauchte Energie	100.598 kWh
eingespeiste Energie	2.698 kWh

Erzeugte Energie	103.296 kWh
Energiebezug	0 kWh
Wirkungsgrad	-

BHKW Gas 1 Baujahr: 2004

Schnellsteuerbares BHKW


Wert der selbstverbrauchten Energie	11.300 €
Einnahmen durch eingespeiste Energie	144 €
Wert der erzeugten Energie	11.444 €
Energiebezugskosten	11.150 €
Wartungs- und Betriebskosten	100 €
Ersparnis	194 €
selbstverbrauchte Energie	120.110 kWh
eingespeiste Energie	3.443 kWh
Erzeugte Energie	123.553 kWh
Energiebezug	159.287 kWh
Wirkungsgrad	77 %

3.3 Energieeinsatz Jahr 2017

	MWh	Wert [€]	€/MWh	Anteil
Strom	2.937,77	605.546,00	206,12	63,08 %
Diesel	852,99	74.991,00	87,92	18,31 %
Erdgas	632,28	30.939,91	48,93	13,58 %
Heizöl (EL)	109,12	6.000,00	54,98	2,34 %
Nutzwärme / BHKW	98,56	5.913,84	60,00	2,12 %
Benzin E10	26,60	2.214,00	83,24	0,57 %
Gesamt	4.657,32	725.604,75	155,80	100,00 %

Energieeinsatz Jahr 2017

3.4 Energieverbraucheranalyse

3.4.1 Verbraucherstrukturen

Im Folgenden werden die vorhandenen Verbraucherstrukturen zur besseren Gliederung zusammenfassend beschrieben. Eine Darstellung der Gesamtstruktur inklusive der Verbraucherzugehörigkeit kann dem Anhang entnommen werden.

EDV und Peripherie (Anlage)

PCs werden im 5 Jahreszyklus durch rotiert. Hardware ist im Schnitt 3 Jahre alt.

Gesamtverbrauch: 30,14 MWh (0,65 % des gesamten Energieeinsatzes)

Fuhrpark (Geschäftsbereich)

Dieser Bereich beinhaltet sowohl die gesamte PKW Flotte als auch die gesamte LKW Flotte des Unternehmens.

Gesamtverbrauch: 868,89 MWh (18,66 % des gesamten Energieeinsatzes)

Fuhrpark → LKW Flotte (Anlage)

Zwei 2011 Jahrgang und drei 2015 Jahrgang. Fahrzeuge vom gleichen Typ. Zwei stehen zur Erneuerung an. Essentiell für unabhängigen Betrieb.

Gesamtverbrauch: 845,59 MWh (18,16 % des gesamten Energieeinsatzes)

Fuhrpark → **PKW** Flotte (Anlage)

Repräsentatives Fahrzeug wegen Presseauftritte zum Demonstrieren der Umweltverbundenheit

Gesamtverbrauch: 23,30 MWh (0,50 % des gesamten Energieeinsatzes)

Heizung (Anlage)

Ölheizung im Jahr 1995 erneuert. Aktuelle TÜV ohne Beanstandung.

Gesamtverbrauch: 712,80 MWh (15,30 % des gesamten Energieeinsatzes)

Molkereiprodukte (Geschäftsbereich)

Hier ist der komplette Geschäftsbereich der Milchverarbeitung beinhaltet.

Gesamtverbrauch: 2.181,92 MWh (46,85 % des gesamten Energieeinsatzes)

Molkereiprodukte → Joghurt-Bereitung (Anlage)

Systeme werden Durch "Gut -Gewartet GmbH" regelmäßig auf Energieverbrauch überprüft

Gesamtverbrauch: 113,32 MWh (2,43 % des gesamten Energieeinsatzes)

Molkereiprodukte → Kältetechnik (Anlage)

Doppelt ausgelegt um im Fehlerfall keinen Produktionsausfall zu haben

Gesamtverbrauch: 1.939,17 MWh (41,64 % des gesamten Energieeinsatzes)

Molkereiprodukte → Logistik und Hygiene (Anlage)

Reinigungsanlagen für Produktion und Hallensysteme, Innenhallen Transport.

Gesamtverbrauch: 23,52 MWh (0,51 % des gesamten Energieeinsatzes)

Molkereiprodukte → **Produktion** (Anlage)

Eigene Label und Becherproduktion da günstiger als ein Vergleichbarer Zukauf.

Gesamtverbrauch: 63,44 MWh (1,36 % des gesamten Energieeinsatzes)

Abb. 5: Verpackungsanlage innerhalb der Produktionshalle

Verwaltung (Geschäftsbereich)

Standort Verwaltung Fibu Personal

Gesamtverbrauch: 597,57 MWh (12,83 % des gesamten Energieeinsatzes)

Verwaltung → **Beleuchtung** (Anlage)

Beleuchtung besteht hauptsächlich aus Leuchtstoffröhren. Wechsel auf LED-Technik ist vorgesehen.

Gesamtverbrauch: 106,77 MWh (2,29 % des gesamten Energieeinsatzes)

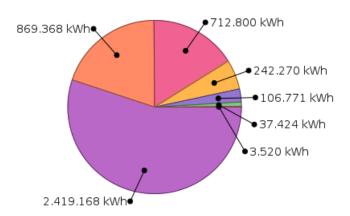
Verwaltung → **Serverraum** (Anlage)

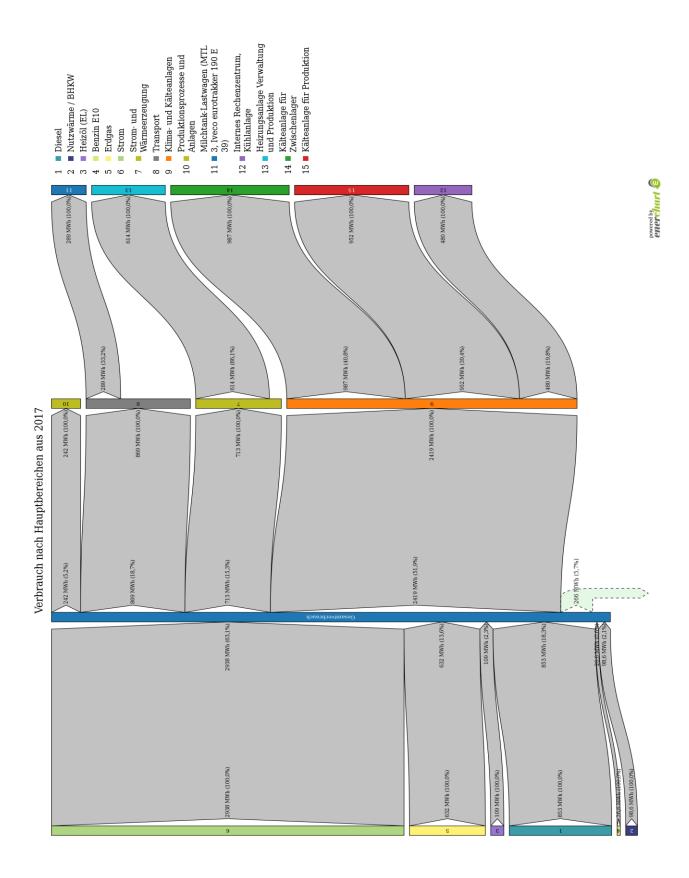
Verwaltung erhält alle 3 Jahre neue Systeme. Die bisherige Anlage wechselt dann immer zur Weiternutzung zum Kühlzentrum.

Gesamtverbrauch: 490,80 MWh (10,54 % des gesamten Energieeinsatzes)

3.4.2 Energieverbrauch Jahr 2017

Verbraucherbereich	Verbrauch [kWh]	Anteil
Klima- und Kälteanlagen	2.419.168	51,94 %
Transport	869.368	18,67 %
Strom- und Wärmeerzeugung	712.800	15,30 %
Produktionsprozesse und Anlagen	242.270	5,20 %
Beleuchtung	106.771	2,29 %
Informations- und Kommunikationstechnik	37.424	0,80 %
Sonstige	3.520	0,08 %
Summe	4.391.322	94,29 %


Die größten Verbraucher waren:


Verbraucher	Energieträger	Verbrauch [kWh]	Anteil
Kälteanlage für Zwischenlager	Strom	987.168,00	22,48 %
Kälteanlage für Produktion	Strom	952.000,00	21,68 %
Heizungsanlage Verwaltung und Produktion	Erdgas	613.800,00	13,98 %

Im Anhang befindet sich eine detaillierte Auflistung aller Verbraucher mit zugehörigem Energieverbrauch.

Energieverbrauch Jahr 2017

- Klima- und Kälteanlagen
- Transport
- Strom- und Wärmeerzeugung
- Produktionsprozesse und Anlagen
- Beleuchtung
- Informations- und Kommunikationstechnik
- Sonstige

3.4.3 Messwesen

Viele der Messungen fallen nebenher an. Sie werden vom Zentralem System automatisch in das System übernommen.

Die Messungen der Betriebsmittel der Flotte und der Klimaanlage sind hierbei ausgenommen, da die einen mobilitäts-bedingt nicht automatisch ausgelesen werden können und die andere nicht an die EDV angeschlossen ist (Galvanische Trennung)

Im Audit wurde der Energieverbrauch von technischen Anlagen, Aggregaten und Prozessen nach unterschiedlichen Methoden ermittelt. Nachfolgende Aufstellung fasst zusammen, welche Messmethoden bei der Ermittlung der Verbrauchsdaten zum Einsatz kamen:

Verbraucher insgesamt: 93

• Zähler: 55

Mobile Messung: 1Berechnung: 37Abschätzung: 0

Im Anhang kann jedem einzelnen Verbraucher seine Messmethode entnommen werden.

3.5 Energiebilanz

Jahr	Energiebezug [MWh]	Energieeinsatz [MWh]	Energieverbrauch [MWh]	Anteil
2017	4.595,90	4.657,32	4.391,32	94,29 %
2016	4.596,58	4.661,58	4.428,74	95,01 %

3.5.1 Energiebilanz nach Energieträgern Jahr 2017

	Energiebezug [MWh]	Energieeinsatz [MWh]	Energieverbrauch [MWh]	Anteil
Strom	2.815,62	2.937,77	2.809,63	95,64 %
Diesel	852,99	852,99	845,59	99,13 %
Erdgas	791,57	632,28	613,80	97,08 %
Heizöl (EL)	109,12	109,12	99,00	90,72 %
Benzin E10	26,60	26,60	23,30	87,59 %
Gesamt	4.595,90	4.657,32	4.391,32	94,29 %

3.6 Betriebliche Informationen

Im Folgenden sind betriebliche Besonderheiten festgehalten, die einen markanten Einfluss auf die Energiebilanz im Betrachtungsjahr hatten und die das bestehende Energiemanagement beschreiben:

Jahr 2017	
-----------	--

Jahr 2017	
Betriebliche Entwicklung und Ereignisse in der Vergangenheit, die den Energieverbrauch in der Periode, über die gesammelte Daten vorliegen, beeinflusst haben könnten	, 3
	Es handelt sich hierbei um die erste Untersuchung des Unternehmens in Bezug auf Energie und Energieeffizienz.
Bewertung des Zustandes des Energiemanagementsystems	Im Unternehmen ist bisher noch kein Energiemanagementsystem integriert.
Andere relevante Wirtschaftsdaten	Zweiwöchiger Lieferstopp von Milch durch Proteste der Bauern gegen den Milchpreis.

Jahr 2016		
Betriebliche Entwicklung und Ereignisse in der Vergangenheit, die den Energieverbrauch in der Periode, über die gesammelte Daten vorliegen, beeinflusst haben könnten	, 3	
	Es handelt sich hierbei um die erste Untersuchung de Unternehmens in Bezug auf Energie und Energieeffizienz	
Bewertung des Zustandes des Energiemanagementsystems	Im Unternehmen ist bisher noch kein Energiemanagementsystem integriert.	
Andere relevante Wirtschaftsdaten	Zweiwöchiger Lieferstopp von Milch durch Proteste der Bauern gegen den Milchpreis.	

3.7 Kennzahlen (EnPI's)

Kühlenergie pro Palette (Joghurt)

Diese Kennzahl definiert die notwendige Kühlenergie pro gelagerter Palette mit MoPro.

Da die benötigte Kühlenergie ebenfalls von der Umgebungstemperatur abhängt, wird ein Anpassungsfaktor in der Berechnung dieser Kennzahl berücksichtigt, welcher sich aus der mittleren Jahrestemperatur ergibt.

	2017	2016
Verbrauch [kWh]	987.168	995.000
Vergleich [EUR-Palette]	800	795
Anpassungsfaktor	1,15	1,13
Kennzahl [kWh/EUR-Palette]	1.419,05	1.414,28

Stromkosten pro Verwaltungsmitarbeiter

Stromkosten pro Verwaltungsmitarbeiter (Vollzeitäquivalente) in der Verwaltung.

	2017	2016
Verbrauch [kWh]	1.134.744	1.155.730
Vergleich [Mitarbeiter Verwaltung]	305	309
Kennzahl [kWh/Mitarbeiter Verwaltung]	3.720,47	3.740,23

3.8 Anpassungsfaktoren

Im Folgenden werden die Anpassungsfaktoren, welche bei errechneten Verbrauchswerten berücksichtigt wurden, zusammenfassend beschrieben. Eine detaillierte Zuordnung zu den jeweils angepassten Verbrauchswerten befindet sich im Anhang. Für eine leichtere Zuordnung werden hierbei die Abkürzungen "AF1" bis "AF4" verwendet.

AF1: Beleuchtung

Die Beleuchtungsanlage im Zwischenlager, der Garage sowie der Produktionshalle ist einheitlich gedimmt. Dies wird durch einen entsprechende Anpassungsfaktor bei der Berechnung der Verbrauchswerte berücksichtigt.

Wert der Anpassung 2017	50.8 %
Wert der Anpassung 2016	100 %
Anzahl angepasster Verbräuche 2017	3
Anzahl angepasster Verbräuche 2016	2

AF2: Fahrzeuge

Da die Herstellerangaben bezüglich des durchschnittlichen Verbrauchs nicht zutreffen, sondern alle Fahrzeuge in Wirklichkeit ähnlich viel mehr verbrauchen, sorgt dieser Faktor für eine entsprechende Anpassung.

Wert der Anpassung 2017	110 %
Wert der Anpassung 2016	100 %
Anzahl angepasster Verbräuche 2017	7
Anzahl angepasster Verbräuche 2016	0

AF3: Heizung

Da mittlerweile das gesamte Personal der Werkstatt sehr kälteresistent ist, wird dort sehr viel weniger geheizt. Diese Anpassung soll durch einen entsprechenden Faktor berücksichtigt werden

Wert der Anpassung 2017	90 %
Wert der Anpassung 2016	100 %
Anzahl angepasster Verbräuche 2017	2
Anzahl angepasster Verbräuche 2016	0

AF4: Produktionsstunden

Energieeinsatz in der Produktion verhält sich proportional zur Anzahl der Produktionsstunden. Deshalb wird eine einheitliche Anpassung durch diesen Faktor für die betroffenen Verbraucher erforderlich.

Wert der Anpassung 2017	91.4 %
Wert der Anpassung 2016	100 %
Anzahl angepasster Verbräuche 2017	5
Anzahl angepasster Verbräuche 2016	2

4 Möglichkeiten zur Verbesserung der Energieeffizienz

4.1 Schwerpunkte

Im Zuge der energetischen Analyse wurde beschlossen, dass der Schwerpunkt des Untersuchungsgegenstandes der Auditierung auf folgenden Themen liegen soll:

4.1.1 Gebäudehülle

Der Verwaltungstrakt ist ein 4-stöckiges Gebäude ohne Unterkellerung. Die Büros bestehen aus 52 gleichartigen Einheiten. Der Bauzustand ist 1962. Jedes Büro ist mittlerweile für 6 Mitarbeiter ausgelegt. Das ursprüngliche Belüftungskonzept des Gebäudes ist auf 4 Mitarbeiter pro Büro ausgelegt gewesen und wurde mittels einer Klimaanlage ganzjährig geregelt.

Im Winter muss geheizt werden da die ausreichende Belüftung lediglich über Fenster möglich ist und hierdurch ein großer Wärmeverlust stattfindet. Im Sommer ist die Klimaanlage nicht ausreichend weshalb nur ein Teil des Gebäudes (Südflanke) durch die Klimaanlage versorgt wird und der Rest der Räume (Nordflanke) ober Fenster gelüftet wird.

Abb. 6: Das Verwaltungsgebäude

Zugeordnete Strukturen

Heizung (Anlage)

Ölheizung im Jahr 1995 erneuert. Aktuelle TÜV ohne Beanstandung.

Gesamtverbrauch: 712,80 MWh (15,30 % des gesamten Energieeinsatzes)

Zugeordnete Verbraucher und Verbrauch für das Jahr 2017

	Verbraucher	MWh
Heizung	- Heizungsanlage Verwaltung und Produktion	712,80

	Verbraucher	MWh
	- Heizungsanlage für Werkstatt/Garage	
Summe		712,80

4.1.2 Beleuchtung

Die Beleuchtung setzt hauptsächlich auf Leuchtstoffröhren und wurden im Jahr 1991 als Großposten eingekauft. Die Bestände sind praktisch abgearbeitet und ein genereller Wechsel auf aktuelle LED Warmlicht Leuchtmittel ist geplant.

Abb. 7: Beleuchtungsanlage des Zwischenlagers

Im Jahr 2017 betrug der gesamte Energieverbrauch dieses Bereichs 106,77 MWh.

Die größten Verbraucher waren:

Verbraucher	MWh
Beleuchtung Produktionshalle	104,85
Beleuchtung Werkstatt/Garage	1,91
5 x Beleuchtung Zwischenlager	0,01
Summe	106,77

4.1.3 Produktionsprozesse und Anlagen

Die Anlagen, obgleich auf aktuellem Stand, sollen hinsichtlich Ihrer Aktivitätszyklen überprüft werden um die Spitzenlast zu reduzieren und hierdurch Kosteneinsparungen im Energiebezug zu ermöglichen

Abb. 8: Pasteurizer TETRA PAK Multitube in der Produktionshalle

Im Jahr 2017 betrug der gesamte Energieverbrauch dieses Bereichs 242,27 MWh.

Die größten Verbraucher waren:

Verbraucher	MWh
Pasteurizer TETRA PAK Multitube	80,00
Molkerei Abfüllmaschinen CATTA 27	23,76
Tetra-Pak-Abfüllanlage Tetra Pak TP C3/Flex XH&DIMC	23,61
Summe	127,37

Die Liste aller Verbraucher dieses Bereichs finden Sie im Anhang

4.1.4 Transport

Ein Teil der Fahrzeugflotte erreicht nicht mehr die Umweltstandards die für den Produktionsstandort neuerdings festgelegt sind. Es soll geprüft werden in wie weit die Neuanschaffung der Gesamtflotte sinnvoll ist um identische Prozessabläufe zu ermöglichen oder lediglich die betroffenen Fahrzeuge ausgetauscht werden sollen.

Abb. 9: Neue Generation von Milchtank-Lastwagen

Im Jahr 2017 betrug der gesamte Energieverbrauch dieses Bereichs 869,37 MWh.

Die größten Verbraucher waren:

Verbraucher	MWh
Milchtank-Lastwagen (MTL 3, Iveco eurotrakker 190 E 39)	288,91
Milchtank-Lastwagen (MTL 5) Scania 124-400	213,39
Milchtank-Lastwagen (MTL 2, Iveco eurotrakker 190 E 39)	169,58
Summe	671,88

Die Liste aller Verbraucher dieses Bereichs finden Sie im Anhang

4.1.5 Klima- und Kälteanlagen

Wie bereits bei der Gebäudehülle an gemerkt ist die Klimaanlage des Verwaltungsbau nicht mehr hinreichend. Es soll geprüft werden ob die Altanlage noch weiterverwendet werden kann und lediglich über ein Zusatzmodul ergänzt werden muss oder ob eine neue Anlage konzeptioniert werden soll. Falls die Anlage noch neu genug ist aber im Verwaltungstrakt nicht mehr einsetzbar ist, kann eine Weiterverwertung in einem Produktionsstandort, bei dem die bisherige Klimaanlage altersbedingt ausgetauscht werden muss, in Erwägung gezogen werden.

Abb. 10: Aktuelle Klimaanlage der Produktionsabteilung

Im Jahr 2017 betrug der gesamte Energieverbrauch dieses Bereichs 2.419,17 MWh.

Die größten Verbraucher waren:

Verbraucher	MWh
Kälteanlage für Zwischenlager	987,17
Kälteanlage für Produktion	952,00
Internes Rechenzentrum, Kühlanlage	480,00
Summe	2.419,17

4.2 Zusammenfassung der Maßnahmen

Die nachfolgende Tabelle listet alle definierten Maßnahmen auf:

	Maßnahmenbezeichnung	geplant für
M1	Abwärmenutzung aus den Chillern der Klimakälteerzeugung	Dez 2018
M2	Austausch betagter Milchtanklastwagen	Jan 2019
M3	Verringerung der Kühllager-Fläche durch kürzere Lagerzeiten	Okt 2018

Die Maßnahmen sind nach Ihrer Priorität aufgeführt, welche sich ihrerseits aus dem höchsten CO₂-Einsparpotential ergibt:

	Einsparung p	ro Jahr			
Maßnahme	€	kWh	CO ₂ [kg]	Investitionsvolumen [€]	Nutzungsdauer [a]
M1	6.412	130.000	31.980	30.001	8

M2	10.792	100.000	26.200	140.000	25
M3	521	5.000	2.901	0	20
Summe	17.725	235.000	61.081	170.001	

4.3 Maßnahmen

4.3.1 Abwärmenutzung/WRG

4.3.1.1 M1: Abwärmenutzung aus den Chillern der Klimakälteerzeugung

Beschreibung

Durch die direkte Einkopplung von Wärmeaustauschern in die Heißgasleitung der Kälteanlagen-Rückkühlwerke kann ein erheblicher Anteil an Wärmeenergie zu Heizzwecken ganzjährig nutzbar gemacht werden. Die Anwendung erstreckt sich dabei von der Gebäudebeheizung bis hin zur Nacherwärmung von entfeuchteter Raumluft.

Abb. 11: Multitube Behälter der Produktionsabteilung

Betroffene Gebäude:

- Produktions- und Abfüllstätte
- Verwaltungsgebäude

Geplant für	Dez 2018
Geschätztes Aufwand	geringe Investition
Technische Nutzungsdauer	8 Jahre
Investitionsvolumen	30.001 €

CO₂-Einsparungen über Nutzungsdauer	255.840 kg
CO ₂ -Vermeidungskosten	0,12 €/kg

Wärmequelle

Art des Trägermediums	Kältemittel		
Spezifische Wärmekapazität	1,10 kJ/kgK		
Temperaturdifferenz	20,0 °C		
Betriebsstunden pro Jahr	8.736 Stunden		
Volumenstrom	20,00 m³/h		
Dichte	806,00 m³/h		
Wärmeleistung	98,51 kW		
Wärmemenge pro Jahr	860.593,07 kWh		
Frzeugungsprofil (Zeitlicher Verlauf der Wärmeleistung)			

Erzeugungsprofil (Zeitlicher Verlauf der Wärmeleistung)

Da die Kälteanlage eine durchgängige konstante Leistung erbringen muss, ist der Verlauf der Wärmeleistung abhängig von den Außentemperaturen. Hierdurch ergibt sich eine erhöhte Wärmeleistung zur Tageszeit. Außerdem stellt auch der Jahreszeiten abhängige Temperaturunterschied einen weiteren Faktor des zeitlichen Verlaufs dar.

Wärmesenke

Art des Trägermediums	Wasser
Spezifische Wärmekapazität	4,18 kJ/kgK
Temperaturdifferenz	10,0 °C
Betriebsstunden pro Jahr	1.960 Stunden
Massenstrom	200,00 kg/h
Wärmeleistung	2,32 kW
Wärmemenge pro Jahr	4.551,56 kWh
Bedarfsprofil	

Wie für ein Heizungssystem üblich steigt die benötigte Wärmeleistung in den Wintermonaten enorm an. In den Sommermonaten hingegen wird das Heizungssystem nicht benötigt. Somit kann die Abwärme nur für ca. sechs Monate genutzt werden, um Heizkosten einzusparen.

Entfernung zur Wärmequelle

Die Kälteanlage befindet sich in unmittelbarer Nähe zum Heizungssystem. Hierdurch kann die Abwärme effektiv ohne größeren Wärmeverlust genutzt werden.

Verbundene Verbraucher:

Errech	Errechnete Verbrauchswerte							
Anz.	Verbraucher	Leistung [kW]	Betriebsstunden	Auslastung	Verbrauch [kWh]			
1	Heizungsanlage Verwaltung und Produktion	220,00	3100	90,00%	613.800			
1	Kälteanlage fü Produktion	280,00	3400	100,00%	952.000			

Durchschnittlicher Energiepreis pro kWh	5,32 Cent
Geschätztes Einsparpotential pro Jahr (Genauigkeit +/- 15%)	130.000 kWh

Die Schätzung des Einsparpotentials in kWh beruht auf den berechneten Wärmeleistungen der Wärmequelle und der Wärmesenke sowie der zeitlichen Überschneidung des Bedarfs- und Erzeugungsprofils.

Ist-Wert 2017		Soll-Wert nach Durchführung der Maßnahme		
kWh €		kWh	€	
1.565.800	83.258,19	1.435.800	76.345,71	

Wirtschaftlichkeitsberechnung:

Einsparungen pro Jahr in kWh			
Zugeordnete Verbraucher (5,32 Cent/kWh)	130.000 kWh		
Gesamteinsparung pro Jahr in kWh	130.000 kWh		
Einsparungen pro Jahr in €			
Zugeordnete Verbraucher	6.912 €		
Wartungskosten für Wärmeleitungen	-500 €		
Gesamteinsparung pro Jahr in €	6.412 €		
Geschätzte Investitionskosten	30.001 €		
Kapitalwert	10.619 €		
Interne Verzinsung (Kalkulatorischer Zinssatz: 5,5 %)	13,75 %		
Statische Amortisationszeit in Jahre	4,7		

Die Varianz der Abschätzung des Einsparpotenzials beträgt ca. 15%

Informationen zu Fördermaßnahmen und anwendbare Zuschüsse

KfW-Energieeffizienzprogramm – Abwärme:

Mit dem KfW-Energieeffizienzprogramm – Abwärme werden Investitionen innerhalb Deutschlands in die Modernisierung, die Erweiterung oder den Neubau von Anlagen zur Vermeidung oder Nutzung von Abwärme gefördert:

Innerbetriebliche Vermeidung und Nutzung von Abwärme, z. B.:

- Prozessoptimierung
- Umstellung von Produktionsverfahren auf energieeffiziente Technologien zur Vermeidung bzw. Nutzung von Abwärme
- Dämmung/Isolierung von Anlagen, Rohrleitungen und Armaturen
- Rückführung von Abwärme in den Produktionsprozess
- Vorwärmung von anderen Medien
- Verwendung für Heizung außerhalb des Gebäudes, in dem die Wärme anfällt

- Stromeffizienzmaßnahmen in unmittelbarem Zusammenhang mit der Abwärmemaßnahme

Außerbetriebliche Nutzung von Abwärme

- Auskopplung der Abwärme
- Verbindungsleitungen zur Weitergabe von Wärme an Dritte, z. B. Einspeisung in bestehende Wärmenetze

Verstromung von Abwärme, z. B. Organic Rankine Cycle (ORC)-Technologie

Abwärmekonzept sowie Umsetzungsbegleitung und Controlling

- Aufwendungen für die Erstellung des Abwärmekonzepts einschließlich Umsetzungsbegleitung und Controlling durch externe Sachverständige

Mehr unter:

https://www.kfw.de/inlandsfoerderung/Unternehmen/Energie-Umwelt/Förderprodukte/EE-Abwärme-(294)/

4.3.2 Transport

4.3.2.1 M2: Austausch betagter Milchtanklastwagen

Beschreibung

Ersatz für die betagten Milchtanklastwagen durch neuere, kraftstoffärmere Modelle. Die beiden ältesten Fahrzeuge MTL1 und MTL2 sollten hierbei durch aktuelle Modelle z.B. der Baureihe Scania ABC-01 ersetzt werden.

Neben der Kraftstoffeinparung ergeben sich durch den Einsatz der hubraum-schwächeren Modelle auch weitere Einsparungen bei der KFZ-Steuer und der Versicherung.

Abb. 12: Neue Generation von Milchtank-Lastwagen

Betroffene Gebäude:

• Garage für Milchtank-Lastwagen

Geplant für	Jan 2019
Geschätztes Aufwand	hohe Investition
Technische Nutzungsdauer	25 Jahre
Investitionsvolumen	140.000 €
CO₂-Einsparungen über Nutzungsdauer	655.000 kg
CO ₂ -Vermeidungskosten	0,21 €/kg

Verbundene Verbraucher:

Errech	Errechnete Verbrauchswerte - Transport (Diesel) (Umrechnungsfaktor: 12,80 kWh/l)						
Anz.	Verbraucher	Fahrleistung [Km/Jahr]	Ø Verbrauch [l/100km]	Verbrauch [I]	Verbrauch [kWh]		
1	Milchtank-Lastwagen (MTL 1, Iveco eurotrakker 190 E 39)	47.925,90	24,30	11.645,99	149.069		
1	Milchtank-Lastwagen (MTL 2, Iveco eurotrakker 190 E 39)	54.519,30	24,30	13.248,19	169.577		
Durchschnittlicher Energiepreis pro kWh					8,79 Cent		
Geschätztes Einsparpotential pro Jahr (Genauigkeit +/- 15%)				100.000 kWh			

Der Durchschnittsverbrauch der alten Tanklastwagen lag bei ca. 24,3 l/100 km. Laut Herstellerangaben der neuen Modelle sollte dieser Verbrauch um etwa 7 Liter sinken. Hieraus ergibt sich das angegebene energetische Einsparpotential.

Ist-Wert 2017		Soll-Wert nach Durchführung der Maßnahme		
kWh	€	kWh	€	
318.646	28.014,00	218.646	19.222,41	

Wirtschaftlichkeitsberechnung:

Einsparungen pro Jahr in kWh	
Zugeordnete Verbraucher (8,79 Cent/kWh)	100.000 kWh
Gesamteinsparung pro Jahr in kWh	100.000 kWh
Einsparungen pro Jahr in €	
Zugeordnete Verbraucher	8.792 €
Geringere Wartungskosten	2.000 €
Gesamteinsparung pro Jahr in €	10.792 €
Geschätzte Investitionskosten	140.000 €

Kapitalwert	4.758 €
Interne Verzinsung (Kalkulatorischer Zinssatz: 5,5 %)	5,86 %
Statische Amortisationszeit in Jahre	13,0

Die Varianz der Abschätzung des Einsparpotenzials beträgt ca. 15%

Informationen zur Nachweisbarkeit

Die Nachweisbarkeit ergibt sich durch den direkten Vorher-Nachher-Vergleich des Kraftstoffverbrauchs im Verhältnis zu den geleisteten Kilometern. Der Durchschnittsverbrauch der alten Tanklastwagen lag bei ca. 24,3 l/100 km. Laut Herstellerangaben der neuen Modelle sollte dieser Verbrauch um etwa 7 Liter sinken. Der Nachweis erfolgt über die künftigen Tankabrechnungen.

Informationen zu Fördermaßnahmen und anwendbare Zuschüsse

KfW-Konsortialkredit Energie und Umwelt:

Der KfW-Konsortialkredit Energie und Umwelt fördert:

- 1. Vorhaben zur Steigerung der betrieblichen Energieeffizienz. Dazu gehören: Energieeffizienzmaßnahmen, die zu einer Energieeinsparung von mindestens 10 % führen sowie die Sanierung und der Neubau von energieeffizienten Nichtwohngebäuden
- 2. Innovative Vorhaben zur Neu- bzw. Weiterentwicklung von Technologien zur Energieeinsparung, zur effizienten Energieerzeugung und -übertragung sowie zur Speicherung
- 3. Ausbau und Nutzung erneuerbarer Energien
- 4. Vorhaben im Bereich Umwelt-, Klima- und Ressourcenschutz

4.3.3 Klima- und Kälteanlagen

4.3.3.1 M3: Verringerung der Kühllager-Fläche durch kürzere Lagerzeiten

Beschreibung

Die Kühllager-Fläche wird durch kürzere Lagerzeiten verringert.

Betroffene Gebäude:

Zwischenlager für Produkte

Geplant für	Okt 2018
Geschätztes Aufwand	organisatorisch
Technische Nutzungsdauer	20 Jahre
Investitionsvolumen	0€
CO ₂ -Einsparungen über Nutzungsdauer	58.010 kg
CO ₂ -Vermeidungskosten	0,00 €/kg

Verbundene Verbraucher:

Errechnete Verbrauchswerte						
Anz.	Verbraucher		Leistung [kW]	Betriebsstunden	Auslastung	Verbrauch [kWh]
1	Kälteanlage Zwischenlager	für	113,00	8736	100,00%	987.168
Durchschnittlicher Energiepreis pro kWh				20,42 Cent		
Geschätztes Einsparpotential pro Jahr (Genauigkeit +/- 25%)				5.000 kWh		

Bei ca. 1% kürzeren Lagerzeiten ergibt sich das angegebene Einsparpotenzial. Eine ausführliche Berechnung dieses Einsparpotenzials befindet sich im Anhang dieses Dokuments.

Ist-Wert 2017		Soll-Wert nach Durchführung der Maßnahme		
kWh	€	kWh	€	
987.168	201.600,67	982.168	200.579,56	

Wirtschaftlichkeitsberechnung:

Einsparungen pro Jahr in kWh			
Zugeordnete Verbraucher (20,42 Cent/kWh)			
Gesamteinsparung pro Jahr in kWh	5.000 kWh		
Einsparungen pro Jahr in €			
Zugeordnete Verbraucher	1.021 €		
Erhöhter Logistikaufwand	-500 €		
Gesamteinsparung pro Jahr in €	521 €		
Geschätzte Investitionskosten	0€		
Kapitalwert	6.227 €		
Interne Verzinsung (Kalkulatorischer Zinssatz: 5,5 %)	-		
Statische Amortisationszeit in Jahre	0,0		

Die Varianz der Abschätzung des Einsparpotenzials beträgt ca. 25%

Informationen zu Fördermaßnahmen und anwendbare Zuschüsse

Für die vorgeschlagene Maßnahme sind keine Förderprogramme vorgesehen und aufgrund der nicht vorhandenen Investition auch nicht sinnvoll.

4.4 CO₂-Einsparung

Für die beschriebenen Maßnahmen kann aus der Energieeinsparung auch die jährliche CO₂-Einsparung ermittelt werden:

Maßnahme	Name	Einsparung [kWh]	Einsparung CO ₂ [kg]	Einsparung CO₂ [%]		
Abwärmenutzung/WRG						
M1	Einsparung der zugeordneten Verbraucher	130.000	31.980	1,57 %		
Transport						
M2	Einsparung der zugeordneten Verbraucher	100.000	26.200	1,28 %		
Klima- und Kälteanlagen						
M3	Einsparung der zugeordneten Verbraucher	5.000	2.901	0,14 %		

4.5 Vorgehensweise

Die nachfolgenden Informationen wurden gemäß der Norm DIN EN 16247-1 zusätzlich zur Beschreibung der Vorgehensweise beim Audit erfasst:

Anforderungen für zusätzliche Daten

Es sollten Zusätzliche Messungen zur Beurteilung der Energieverteilung durchgeführt werden. So sollten für die verschiedenen Bereiche Stromzähler montiert werden, um die geschätzten und gemessenen Daten weiter zu validieren.

Bedarf für eine weiterführende Analyse

Nachdem die Maßnahme der Abwärmenutzung durchgeführt wurde, sollte vor allem der Einfluss der Lüftungsanlage auf die Energieverbräuche noch mal näher betrachtet werden.

Hier kann es wichtig sein, die Lüftungsanlage vor allem im Winter mit einer richtigen Regelung zu versehen, um unnötiges Heizen zu vermeiden.

Angewendete Methoden und getroffene Annahmen

Aufgrund der vorliegenden Daten der Liegenschaft und der Erkenntnisse aus Begehung und Interview wurden der Energieeinsatz auf die Verbraucher der Hallenbeleuchtung per Schätzverfahren verteilt.

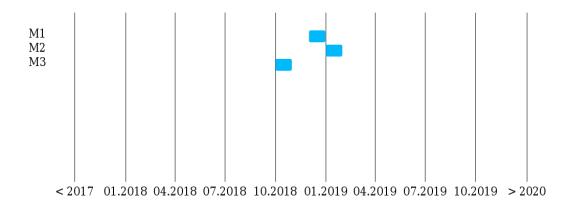
Hinweise zu geeigneten Qualitäts- und Validitätskontrollen, denen die Ergebnisse der Analyse unterzogen wurden

Die Ergebnisse der Analyse einzelner Effizienzbereiche, sowie die Analyse von Messdaten werden durch das Vieraugen-Prinzip in der Qualität der Aussage überprüft.

Des Weiteren wurden die berechneten und geschätzten Verbräuche gegen die Lastgänge validiert und der Standort einer ordentlichen Energieeinsatzanalyse unterzogen.

Berücksichtigte gesetzlichen oder sonstigen Einschränkungen hinsichtlich der potentiellen Möglichkeiten zur Verbesserung der Energieeffizienz

Bei dem Austausch der Milchtanklastwagen wäre nicht nur sinnvoll die beiden ältesten Modelle zu ersetzen, sondern die gesamte LKW-Flotte. Jedoch ergeben sich hierfür sehr hohe


Investitionskosten, weshalb das schrittweise Ersetzen der Flotte empfohlen wird und als erster Schritt der Austausch der beiden ältesten LKWs nahe liegt.

Kriterien für die Rangfolge von Maßnahmen

Die Rangfolge der Maßnahmen wurde unter Berücksichtigung der in den jeweiligen Wirtschaftlichkeitsberechnungen angegebenen Kennwerten "wie z.B. dem Kapitalwert , festgelegt. Darüber hinaus wurden Effizienzmaßnahmen mit geringeren Investitionskosten bevorzugt.

4.6 Maßnahmenplan

Nachfolgendes Diagramm veranschaulicht die zeitliche Planung der im vorherigen Abschnitt beschriebenen Maßnahmen:

5 Schlussfolgerung

Unter den genannten Maßnahmen finden sich mehrere mit sehr großem Einsparpotential. Diese sind jedoch stets auch mit entsprechenden Investitionskosten verbunden.

Die Verkürzung der Lagerzeiten ist hingegen durch rein organisatorischen Aufwand zu verwirklichen und sollte deshalb auch umgehend realisiert werden.

Gebäudehülle

Bei der Gebäudehülle konnte nur das Verwaltungsgebäude als einziges nicht-angemietetes Gebäude in Betracht gezogen werden. Bei diesem Gebäude wurde das höchste Optimierungspotenzial bei der ohnehin anstehenden Dachsanierung ausgemacht. Hier sollte eine zusätzliche Wärmedämmung berücksichtigt werden.

Transport

Das höchste Einsparpotenzial liefert der Austausch der beiden ältesten Milchtanklastwagen MTL1 und MTL2. Hierdurch können insgesamt bis zu 100.000 kWh Energie und bis zu 10.000€ pro Jahr eingespart werden.

Abwärmenutzung/WRG

Die sehr hohen energetischen als auch finanziellen Einsparungen, die durch eine effiziente Abwärmenutzung der Kälteanlage erreicht werden können, sind an sich bereits ausreichende Gründe für eine schnellstmögliche Umsetzung. Hierzu kommen noch potentiellen Zuschüsse des genannten Förderprogramms.

Strom- und Wärmeerzeugung

Mit nur drei Maßnahmen bei der Beleuchtung, in der Türsteuerung und bei der Druckluft können 3445 kWh pro Jahr eingespart werden. Diese Maßnahme ist fest vorgesehen.

Bei der Erfassung aller Verbraucher konnten 94,29% des Energiebezuges abgedeckt werden.

6 Nachweis und Erklärungen

6.1 Ortsbegehungen

Im Rahmen des Audits fanden folgende Besichtigungen vor Ort statt:

04.04.2018 13:26 Uhr - 15:22 Uhr	
Schwerpunkte	Gesamtbegehung des Unternehmens (grob) und Sichtung der Hauptverbraucher in der Produktion
Teilnehmer	Paul Prüfmeister Igor Inhaber
Gesichtete Objekte	Produktionshalle Verwaltungsgebäude Garage für Milchtank-Lastwagen Produktion Zwischenlager für Produkte

01.05.2018 13:24 Uhr - 16:24 Uhr	
Schwerpunkte	Genauere Besichtigung der Produktion, Erfassung der Leistungsdaten und Vorbereitung für eigene Nachmessungen
Teilnehmer	Stefan Scharfseher Peter Produktionschef
Gesichtete Objekte	Produktion (vollständig)

08.05.2018 09:56 Uhr - 17:56 Uhr	
Schwerpunkte	Begehung und Erfassung des Verwaltungsgebäudes
Teilnehmer	Gundolf Ganzgenau Steffen Chefverwalter
Gesichtete Objekte	Verwaltungsgebäude

16.05.2018 09:57 Uhr - 14:58 Uhr	
Schwerpunkte	Begehung und Erfassung des Lagers und der LKW-Werkstatt
Teilnehmer	Paul Prüfmeister Gundolf Ganzgenau Gregor Garagenwart
Gesichtete Objekte	Garage für Milchtank-Lastwagen Zwischenlager für Produkte

6.2 Nachweis der Beratungsleistungen

Die Beratung wurde federführend von Dipl.-Ing. Paul Prüfmeister durchgeführt.

Beratungsinhalt	Zeitraum der Durchführung	Zeitaufwand [h]
Einleitender Kontakt und Auftaktbesprechung	04.04.2018	2,00
Besichtigungen	04.04.2018	14,00
Datenerfassung	02.04.2018 - 01.05.2018	18,00
Ergänzende Messungen	01.04.2018	9,00
Analysephase	17.04.2018	16,00
Berichterstellung	22.04.2018	12,00
Abschlussbesprechung	07.05.2018	3,00
Schulung MA	14.04.2018	8,00
Summe		82,00

6.3 Erklärung des Unternehmens

Hiermit bestätigen wir, dass wir das Audit gemeinsam mit dem Auditor aktiv und konstruktiv begleitet und alle verfügbaren und notwendigen Informationen beigesteuert haben. Das Unternehmen hat

- dem Energieauditor für den Zeitraum des Energieaudits mindestens eine Person als Ansprechpartner zur Verfügung gestellt, die als verantwortliche Person genannt ist und die erforderlichen Befugnisse erhalten hat.
- dem Auditor/der Auditorin bei Ortsterminen Zugang zu allen erforderlichen Anlagen/Verbrauchern gewährt und ihm Einblick in alle relevanten Dokumente gewährt.
- alle betroffenen Personen bezüglich der gestellten Anforderungen hinsichtlich des Energieaudits informiert.
- diesen Bericht vom Auditor erhalten und erläutert bekommen.

Unternehmer/in	
Ort, Datum	Stempel und Unterschrift

6.4 Erklärung des Auditors

Als federführender Auditor bestätige ich mit meiner Unterschrift folgende Tatsachen:

- Ich habe die notwendigen Komponenten für den zu auditierenden Anwendungsbereich und die damit in Verbindung stehenden Arbeiten nachgewiesen. Entsprechende Nachweise (Erfahrungen, Qualifikation, Referenzen, Ausbildungsnachweise) können bei Bedarf eingesehen werden. Dies gilt auch für Mit-Auditoren und Unterauftragnehmer.
- Ich versichere, dass die vom Unternehmen überlassenen Informationen und Unterlagen vertraulich behandelt werden. Dies gilt auch für Mit-Auditoren und Unterauftragnehmer.
- Die Interessen des Unternehmens werden von mir objektiv behandelt. Sofern von mir getroffene Schlussfolgerungen und definierte Maßnahmenbeschreibungen ein eigenes wirtschaftliches oder anderes Interesse begünstigen, so habe ich das Unternehmen hierauf ausdrücklich hingewiesen. Dies gilt auch für Mit-Auditoren und Unterauftragnehmer.
- Sofern spezielle Einrichtungen und Ausrüstungen zur Durchführung des Audits erforderlich waren, so habe ich das Unternehmen hierüber informiert.
- Ich erkläre hiermit, dass die angewendeten Berechnungsverfahren transparent und technisch angemessen sind. Die angewendeten Methoden und alle getroffenen Annahmen sind von mir dokumentiert worden. Vorgenommene Messungen und Beobachtungen waren zuverlässig und entsprachen dem normalen Betrieb.
- Die Ergebnisse der Analysen habe ich geeigneten Qualitäts- und Validitätskontrollen unterzogen.
- Ich bestätige, dass die gelieferten Daten im Rahmen meiner Möglichkeiten zuverlässig sind. Auf eventuelle Fehler oder Abweichungen habe ich hingewiesen.
- Ich habe darauf hingewiesen, ob gesetzliche oder sonstige Einschränkungen bestehen, welche die formulierten Maßnahmen zur Verbesserung der Energieeffizienz beeinträchtigen könnten.

Energieauditor(in)			
Ort Datum		_	
Ort, Datum	Unterschrift		

7 Anhänge

7.1 Gebäudeaufteilung und Verbraucherzugehörigkeit

7.1.1 Verwaltungsgebäude

Raum	Verbraucher
UG / Raum 1 (Heizraum)	- Heizungsanlage Verwaltung und Produktion
UG / Raum 2 (Garage)	- KFZ Vorstand (BMW 5er) - KFZ Poolfahrzeug (VW UP)
EG / Raum 102 (Rechenzentrum)	Internes Rechenzentrum, vmWare-Server (2 Stk)32 x PCs im Verwaltungsgebäude (Siemens Desktops)
OG1 / Bürobereich	Internes Rechenzentrum, Kühlanlage22 x PCs im Verwaltungsgebäude (Laptop Dell)
Ohne Raumzuordnung	

7.1.2 Garage für Milchtank-Lastwagen

Raum	Verbraucher
UG / Garage 1	 Milchtank-Lastwagen (MTL 1, Iveco eurotrakker 190 E 39) Milchtank-Lastwagen (MTL 3, Iveco eurotrakker 190 E 39) Milchtank-Lastwagen (MTL 8) Scania 124-400 Lkw-Waschgerät Steinbrückner
EG / Garage 2	 Milchtank-Lastwagen (MTL 2, Iveco eurotrakker 190 E 39) Milchtank-Lastwagen (MTL 5) Scania 124-400 ELMAG Druckluft Kompressor LKW-Werkstatt EUROAIR 410/10/50 D Reinigungs- und Desinfektionsanlage für Milchtank-LKWs Heizungsanlage für Werkstatt/Garage
Ohne Raumzuordnung	- Beleuchtung Werkstatt/Garage

7.1.3 Zwischenlager für Produkte

Raum	Verbraucher
Haupthalle	 Gabelstapler GS1 Lager 5 x Beleuchtung Zwischenlager Kälteanlage für Zwischenlager
Verwaltungsbüro	- Etikettier-Maschinen für Becher Sleever International LS 5
Ohne Raumzuordnung	

7.1.4 Produktions- und Abfüllstätte

Raum	Verbraucher
Produktionsabteilung	- Aseptische System FINNAH Finamat- Pasteurizer TMCI TECNINDISTRIA Four stages PHC8

Raum	Verbraucher
	 Herstellungslinien für Käse ALPMA U-64/C Homogenisator ALFA LAVAL SHL 25A Kälteanlage für Produktion
Abfüllabteilung	 Karton Abfüllmaschine Elopak Shikoku U S80A Slim Becher - Füll - und Verschließmaschinen HAMBA BK 6005/5 Pasteurizer TETRA PAK Multitube Molkerei Abfüllmaschinen CATTA 27 Tetra-Pak-Abfüllanlage TETRA PAK TBA8 1000SQ Tetra-Pak-Abfüllanlage Tetra Pak TP C3/Flex XH&DIMC
Verpackungsabteilung	 Becher - Füll - und Verschließmaschinen Hugart DS 1000 Verschlussapplikator TETRA PAK 110 TCAP4 Verpackungsmaschine MARIANI TRM-700-LF/1
Ohne Raumzuordnung	- Beleuchtung Produktionshalle - Hebebühne

7.2 Bilder

Abb. 13: Außenansicht Verwaltungsgebäude (Beispielfoto)

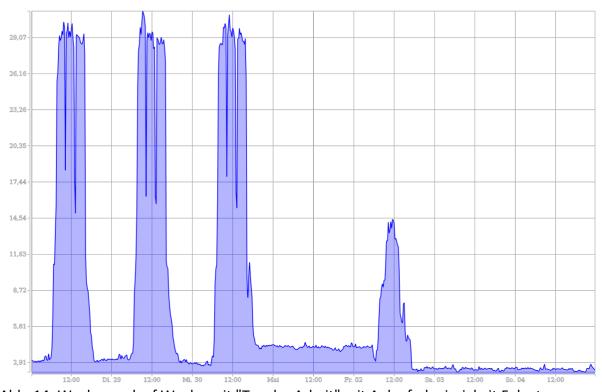


Abb. 14: Wochenverlauf Woche mit "Tag der Arbeit" mit Anlaufschwierigkeit Folgetag

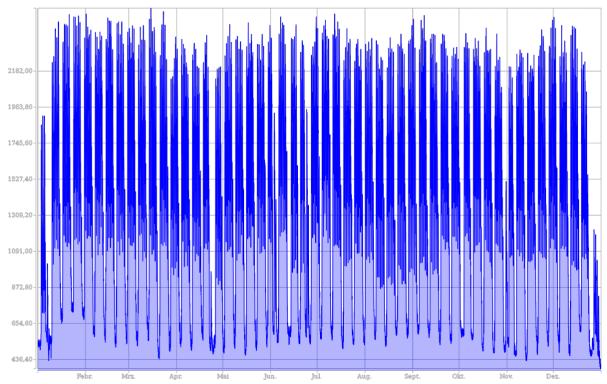


Abb. 15: Jahresübersicht Energieverbrauch Produktionshalle 1

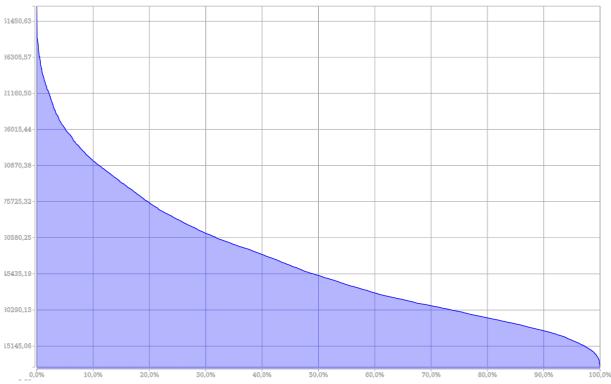


Abb. 16: Gesamtenergiebezug Dauerkennline Werk 1

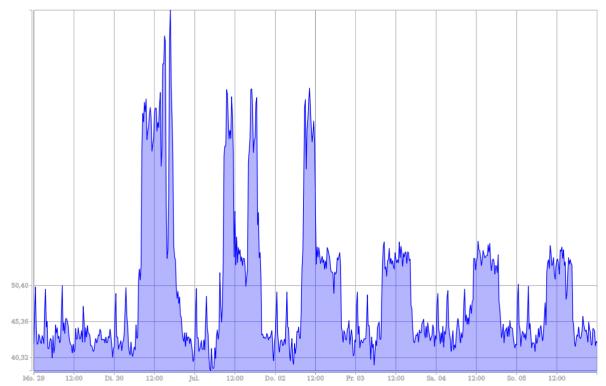


Abb. 17: Überlastabbau durch verzögerten Milcheingang nach Protesten durch Bauern

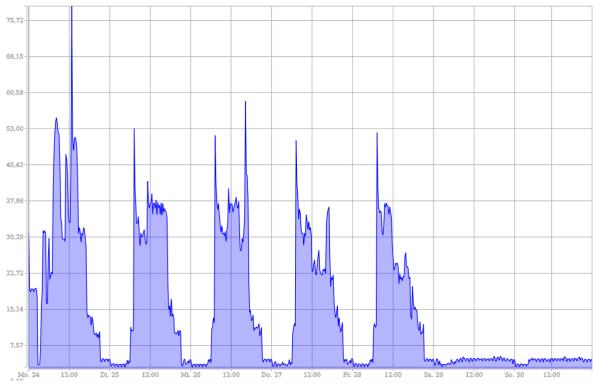


Abb. 18: Wochenverlauf um den Maximalwert (24.03.2014)

7.3 Verbraucher

Messmethode:

A = geschätzter Wert

B = gemessener Wert (Zählernummer)

C = errechneter Wert

D = mobil gemessener Wert

Anz.	Verbraucher	Messmethode	Verbrauch [kWh]	Anteil
Klima	- und Kälteanlagen		2.419.168	51,94 %
1	Kälteanlage für Zwischenlager	С	987.168	21,20 %
1	Kälteanlage für Produktion	С	952.000	20,44 %
1	Internes Rechenzentrum, Kühlanlage	С	480.000	10,31 %
Trans	port		869.368	18,67 %
1	Milchtank-Lastwagen (MTL 3, Iveco eurotrakker 190 E 39)	С	288.914	6,20 %
1	Milchtank-Lastwagen (MTL 5) Scania 124-400	С	213.391	4,58 %
1	Milchtank-Lastwagen (MTL 2, Iveco eurotrakker 190 E 39)	С	169.577	3,64 %
1	Milchtank-Lastwagen (MTL 1, Iveco eurotrakker 190 E 39)	С	149.069	3,20 %
1	Milchtank-Lastwagen (MTL 8) Scania 124-400	С	24.640	0,53 %
1	KFZ Poolfahrzeug (VW UP)	С	13.200	0,28 %
1	KFZ Vorstand (BMW 5er)	С	10.098	0,22 %
1	Lkw-Waschgerät Steinbrückner	С	480	0,01 %
Strom	- und Wärmeerzeugung		712.800	15,30 %
1	Heizungsanlage Verwaltung und Produktion	С	613.800	13,18 %
1	Heizungsanlage für Werkstatt/Garage	С	99.000	2,13 %
Produ	ktionsprozesse und Anlagen		242.270	5,20 %
1	Pasteurizer TETRA PAK Multitube	С	80.000	1,72 %
1	Molkerei Abfüllmaschinen CATTA 27	С	23.760	0,51 %
1	Tetra-Pak-Abfüllanlage Tetra Pak TP C3/Flex XH&DIMC	С	23.609	0,51 %
1	Gabelstapler GS1 Lager	D	20.001	0,43 %
1	Verpackungsmaschine MARIANI TRM-700-LF/1	С	19.380	0,42 %
1	Aseptische System FINNAH Finamat	С	18.714	0,40 %
1	Karton Abfüllmaschine Elopak Shikoku U S80A Slim	С	16.120	0,35 %
1	Becher - Füll - und Verschließmaschinen HAMBA BK 6005/5	B (BX02340-72)	13.167	0,28 %
1	Pasteurizer TMCI TECNINDISTRIA Four stages PHC8	С	13.050	0,28 %

Anz.	Verbraucher	Messmethode	Verbrauch [kWh]	Anteil
1	Becher - Füll - und Verschließmaschinen Hugart DS 1000	С	7.102	0,15 %
1	Reinigungs- und Desinfektionsanlage für Milchtank- LKWs	С	3.040	0,07 %
1	Verschlussapplikator TETRA PAK 110 TCAP4	С	1.280	0,03 %
1	Etikettier-Maschinen für Becher Sleever International LS 5	С	1.170	0,03 %
1	Tetra-Pak-Abfüllanlage TETRA PAK TBA8 1000SQ	С	1.138	0,02 %
1	ELMAG Druckluft Kompressor LKW-Werkstatt EUROAIR 410/10/50 D	С	315	0,01 %
1	Hebebühne	С	291	0,01 %
1	Homogenisator ALFA LAVAL SHL 25A	С	120	0,00 %
1	Herstellungslinien für Käse ALPMA U-64/C	С	15	0,00 %
Beleu	chtung		106.771	2,29 %
1	Beleuchtung Produktionshalle	С	104.851	2,25 %
1	Beleuchtung Werkstatt/Garage	С	1.905	0,04 %
5	Beleuchtung Zwischenlager	С	15	0,00 %
Inform	nations- und Kommunikationstechnik		37.424	0,80 %
32	PCs im Verwaltungsgebäude (Siemens Desktops)	B (SY-19-BIL-95-LE)	26.624	0,57 %
1	Internes Rechenzentrum, vmWare-Server (2 Stk)	С	10.800	0,23 %
Sonsti	ge		3.520	0,08 %
22	PCs im Verwaltungsgebäude (Laptop Dell)	B (ST-19-EFF-83-EN)	3.520	0,08 %
Summ	e		4.391.322	94,29 %

Anz.	Verbraucher	Messmethode	Verbrauch [kWh]	Anteil
Klima	- und Kälteanlagen		2.442.000	52,39 %
1	Kälteanlage für Zwischenlager	B (BX00054-02)	995.000	21,34 %
1	Kälteanlage für Produktion	B (BX003F3-02)	952.000	20,42 %
1	Internes Rechenzentrum, Kühlanlage	B (BX00004-21)	495.000	10,62 %
Transport			799.096	17,14 %
1	Milchtank-Lastwagen (MTL 3, Iveco eurotrakker 190 E 39)	B (BX00254-44)	265.987	5,71 %
1	Milchtank-Lastwagen (MTL 5) Scania 124-400	B (VS4855-FF)	195.623	4,20 %
1	Milchtank-Lastwagen (MTL 2, Iveco eurotrakker 190 E 39)	B (BX00430-11)	160.458	3,44 %
1	Milchtank-Lastwagen (MTL 1, Iveco eurotrakker 190 E 39)	B (EG77724-1)	135.000	2,90 %
1	Milchtank-Lastwagen (MTL 8) Scania 124-400	B (MR1337-42)	18.500	0,40 %

Anz.	Verbraucher	Messmethode	Verbrauch [kWh]	Anteil
1	KFZ Vorstand (BMW 5er)	А	12.000	0,26 %
1	KFZ Poolfahrzeug (VW UP)	B (BX01320-08)	11.050	0,24 %
1	Lkw-Waschgerät Steinbrückner	B (BX00000-00)	478	0,01 %
Strom	- und Wärmeerzeugung		720.080	15,45 %
1	Heizungsanlage Verwaltung und Produktion	B (BX00340-01)	620.000	13,30 %
1	Heizungsanlage für Werkstatt/Garage	B (BX02740-03)	100.080	2,15 %
Produ	ktionsprozesse und Anlagen		222.603	4,78 %
1	Pasteurizer TETRA PAK Multitube	С	80.000	1,72 %
1	Molkerei Abfüllmaschinen CATTA 27	B (DE-19-LP-79-HI)	21.000	0,45 %
1	Aseptische System FINNAH Finamat	С	20.475	0,44 %
1	Gabelstapler GS1 Lager	B (BX00333-39)	20.150	0,43 %
1	Tetra-Pak-Abfüllanlage Tetra Pak TP C3/Flex XH&DIMC	B (TYX-9901-5)	18.000	0,39 %
1	Verpackungsmaschine MARIANI TRM-700-LF/1	B (TYX-9901-2)	14.500	0,31 %
1	Becher - Füll - und Verschließmaschinen HAMBA BK 6005/5	B (BX02340-72)	13.081	0,28 %
1	Pasteurizer TMCI TECNINDISTRIA Four stages PHC8	B (SA-19-ND-91-RA)	12.000	0,26 %
1	Karton Abfüllmaschine Elopak Shikoku U S80A Slim	B (BX00340-97)	11.100	0,24 %
1	Becher - Füll - und Verschließmaschinen Hugart DS 1000	B (BX00350-71)	6.001	0,13 %
1	Reinigungs- und Desinfektionsanlage für Milchtank- LKWs	B (BB-KA-66)	2.000	0,04 %
1	Verschlussapplikator TETRA PAK 110 TCAP4	B (TYX-9901-3)	1.200	0,03 %
1	Tetra-Pak-Abfüllanlage TETRA PAK TBA8 1000SQ	B (KA-BB-33)	1.200	0,03 %
1	Etikettier-Maschinen für Becher Sleever International LS 5	B (BX02940-0g)	1.154	0,02 %
1	Hebebühne	С	318	0,01 %
1	ELMAG Druckluft Kompressor LKW-Werkstatt EUROAIR 410/10/50 D	B (BX08840-21)	300	0,01 %
1	Homogenisator ALFA LAVAL SHL 25A	B (BS00001-02)	110	0,00 %
1	Herstellungslinien für Käse ALPMA U-64/C	B (BX00342-01)	15	0,00 %
Beleu	chtung		204.229	4,38 %
1	Beleuchtung Produktionshalle	С	200.000	4,29 %
1	Beleuchtung Werkstatt/Garage	B (BX00347-03)	4.200	0,09 %
5	Beleuchtung Zwischenlager	С	29	0,00 %
Inforn	nations- und Kommunikationstechnik		37.400	0,80 %
32	PCs im Verwaltungsgebäude (Siemens Desktops)	B (SY-19-BIL-95-LE)	27.000	0,58 %
1	Internes Rechenzentrum, vmWare-Server (2 Stk)	B (BX00300-10)	10.400	0,22 %
Sonst	ige		3.330	0,07 %
22	PCs im Verwaltungsgebäude (Laptop Dell)	B (ST-19-EFF-83-EN)	3.330	0,07 %
Summ	ne		4.428.738	95,01 %

7.3.1 Errechnete Verbrauchswerte

Anz.	Verbraucher	Leistung	Betriebsstunden	Auslastung	Verbrauch [kWh]	
Klima	a- und Kälteanlagen				2.419.168	
1	Kälteanlage für Zwischenlager	113,00	8736	100,00%	987.168	
1	Kälteanlage für Produktion	280,00	3400	100,00%	952.000	
1	Internes Rechenzentrum, Kühlanlage	400,00	1200	100,00%	480.000	
Stror	trom- und Wärmeerzeugung					
1	Heizungsanlage Verwaltung und Produktion	220,00	3100	AF3: 90,00%	613.800	
1	Heizungsanlage für Werkstatt/Garage	50,00	2200	AF3: 90,00%	99.000	
Prod	uktionsprozesse und Anlagen				209.102	
1	Pasteurizer TETRA PAK Multitube	200,00	400	100,00%	80.000	
1	Molkerei Abfüllmaschinen CATTA 27	44,00	540	100,00%	23.760	
1	Tetra-Pak-Abfüllanlage Tetra Pak TP C3/Flex XH&DIMC	63,00	410	AF4: 91,40%	23.609	
1	Verpackungsmaschine MARIANI TRM-700- LF/1	51,00	380	100,00%	19.380	
1	Aseptische System FINNAH Finamat	13,00	1575	AF4: 91,40%	18.714	
1	Karton Abfüllmaschine Elopak Shikoku U S80A Slim	31,00	520	100,00%	16.120	
1	Pasteurizer TMCI TECNINDISTRIA Four stages PHC8	29,00	450	100,00%	13.050	
1	Becher - Füll - und Verschließmaschinen Hugart DS 1000	21,00	370	AF4: 91,40%	7.102	
1	Reinigungs- und Desinfektionsanlage für Milchtank-LKWs	19,00	160	100,00%	3.040	
1	Verschlussapplikator TETRA PAK 110 TCAP4	16,00	80	100,00%	1.280	
1	Etikettier-Maschinen für Becher Sleever International LS 5	13,00	90	100,00%	1.170	
1	Tetra-Pak-Abfüllanlage TETRA PAK TBA8 1000SQ	87,50	13	100,00%	1.138	
1	ELMAG Druckluft Kompressor LKW-Werkstatt EUROAIR 410/10/50 D	5,00	63	100,00%	315	
1	Hebebühne	1,20	265	AF4: 91,40%	291	
1	Homogenisator ALFA LAVAL SHL 25A	4,00	30	100,00%	120	
1	Herstellungslinien für Käse ALPMA U-64/C	0,80	20	AF4: 91,40%	15	
Beleu	106.771					
1	Beleuchtung Produktionshalle	80,00	2580	AF1: 50,80%	104.851	
1	Beleuchtung Werkstatt/Garage	1,50	2500	AF1: 50,80%	1.905	
5	Beleuchtung Zwischenlager	0,07	90	AF1: 50,80%	15	

Anz.	Verbraucher	Leistung	Betriebsstunden	Auslastung	Verbrauch [kWh]
Infor	Informations- und Kommunikationstechnik				
1	Internes Rechenzentrum, vmWare-Server (2 Stk)	3,00	3600	100,00%	10.800
Trans	Transport				
1	Lkw-Waschgerät Steinbrückner	6,00	80	100,00%	480
Sumr	Summe				

Transport (bei Angabe von Fahrleistung und durchschnittlichem Verbrauch)

Diesel

Anz.	Verbraucher	Fahrleistung [km/Jahr]	Ø Verbrauch [l/100km]	Auslastung	Verbrauch [I]
1	Milchtank-Lastwagen (MTL 3, Iveco eurotrakker 190 E 39)	89.215,00	23,00	AF2: 110,00%	22.571,40
1	Milchtank-Lastwagen (MTL 5) Scania 124-400	65.894,00	23,00	AF2: 110,00%	16.671,18
1	Milchtank-Lastwagen (MTL 2, Iveco eurotrakker 190 E 39)	49.563,00	24,30	AF2: 110,00%	13.248,19
1	Milchtank-Lastwagen (MTL 1, Iveco eurotrakker 190 E 39)	43.569,00	24,30	AF2: 110,00%	11.645,99
1	Milchtank-Lastwagen (MTL 8) Scania 124-400	7.000,00	25,00	AF2: 110,00%	1.925,00

Benzin E10

Anz.	Verbraucher	Fahrleistung [km/Jahr]	Ø Verbrauch [l/100km]	Auslastung	Verbrauch [I]
1	KFZ Poolfahrzeug (VW UP)	14.524,00	5,40	AF2: 110,00%	862,73
1	KFZ Vorstand (BMW 5er)	10.000,00	6,00	AF2: 110,00%	660,00

Anz.	Verbraucher	Leistung	Betriebsstunden	Auslastung	Verbrauch [kWh]	
Bele	Beleuchtung					
1	Beleuchtung Produktionshalle	80,00	2500	AF1: 100,00%	200.000	
5	Beleuchtung Zwischenlager	0,07	90	AF1: 100,00%	29	
Prod	uktionsprozesse und Anlagen				100.793	
1	Pasteurizer TETRA PAK Multitube	200,00	400	100,00%	80.000	
1	Aseptische System FINNAH Finamat	13,00	1575	AF4: 100,00%	20.475	
1	Hebebühne	1,20	265	AF4: 100,00%	318	
Sumi	Summe					

7.3.2 Verbraucher Bilder

Milchtank-Lastwagen (MTL 1, Iveco eurotrakker 190 E 39)

Abb. 19: Neue Generation von Milchtank-Lastwagen

Milchtank-Lastwagen (MTL 3, Iveco eurotrakker 190 E 39)

Abb. 20: Beleuchtungsanlage des Zwischenlagers

Pasteurizer TETRA PAK Multitube

Abb. 21: Pasteurizer TETRA PAK Multitube in der Produktionshalle

Tetra-Pak-Abfüllanlage TETRA PAK TBA8 1000SQ

Abb. 22: Aktuelle Klimaanlage der Produktionsabteilung

Gabelstapler GS1 Lager

Abb. 23: Gabelstapler - Kopie - Kopie.jpg

Beleuchtung Produktionshalle

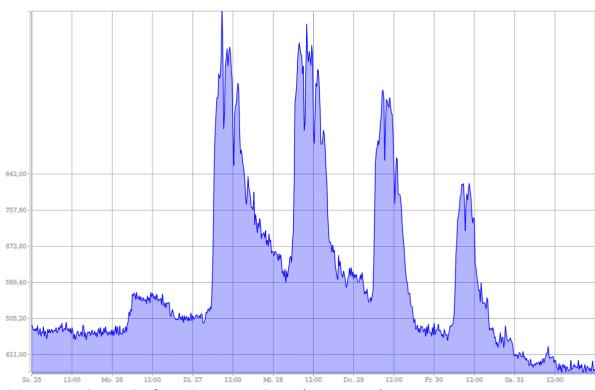
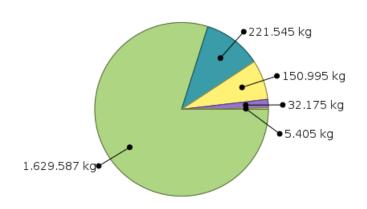


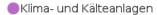
Abb. 24: Wochenverlauf um den Minimalwert (06.04.2017)

7.4 CO₂-Bilanz

Verwendete CO₂-Umrechnungsfaktoren


Energieträger	CO ₂ Faktor [g / kWh]
Strom	580
Erdgas	246
Heizöl (EL)	325
Diesel	262
Benzin E10	232

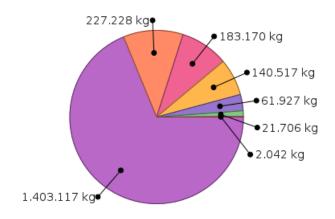
CO₂ in den letzten zwei Jahren


Jahr	CO₂-Ausstoß [kg]
2017	2.039.707
2016	2.081.416

CO2-Menge nach Energieträger Jahr 2017

CO2-Menge nach Hauptbereich Jahr 2017

Transport


Strom- und Wärmeerzeugung

Produktionsprozesse und Anlagen

Beleuchtung

Informations- und Kommunikationstechnik

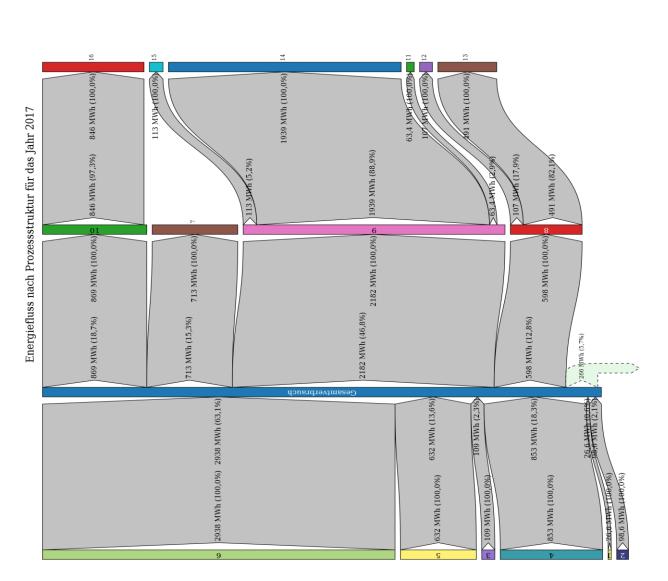
Sonstige

Kalenderjahr 2017 im Detail

Anz.	Verbraucher	Energieträger	CO ₂ Menge [kg]	
Klima	a- und Kälteanlagen		1.403.117	
1	Kälteanlage für Zwischenlager	Strom	572.557	
1	Kälteanlage für Produktion	Strom	552.160	
1	Internes Rechenzentrum, Kühlanlage	Strom	278.400	
Trans	port		227.228	
1	1 Lkw-Waschgerät Steinbrückner Strom			
1	Milchtank-Lastwagen (MTL 8) Scania 124-400	Diesel	6.456	
1	Milchtank-Lastwagen (MTL 3, Iveco eurotrakker 190 E 39)	Diesel	75.695	
1	Milchtank-Lastwagen (MTL 2, Iveco eurotrakker 190 E 39)	Diesel	44.429	
1	Milchtank-Lastwagen (MTL 1, Iveco eurotrakker 190 E 39)	Diesel	39.056	
1	Milchtank-Lastwagen (MTL 5) Scania 124-400	Diesel	55.908	
1	KFZ Vorstand (BMW 5er)	Benzin E10	2.343	
1	KFZ Poolfahrzeug (VW UP)	Benzin E10	3.062	
Stror	n- und Wärmeerzeugung		183.170	
1	Heizungsanlage Verwaltung und Produktion	Erdgas	150.995	
1	Heizungsanlage für Werkstatt/Garage	Heizöl (EL)	32.175	
Prod	uktionsprozesse und Anlagen		140.517	
1	Hebebühne	Strom	169	
1	Herstellungslinien für Käse ALPMA U-64/C	Strom	8	
1	Homogenisator ALFA LAVAL SHL 25A	Strom	70	
1	Gabelstapler GS1 Lager	Strom	11.601	
1	ELMAG Druckluft Kompressor LKW-Werkstatt EUROAIR 410/10/50 D	Strom	183	

Anz.	Verbraucher	Energieträger	CO₂ Menge [kg]
1	Reinigungs- und Desinfektionsanlage für Milchtank-LKWs	Strom	1.763
1	Tetra-Pak-Abfüllanlage Tetra Pak TP C3/Flex XH&DIMC	Strom	13.693
1	Tetra-Pak-Abfüllanlage TETRA PAK TBA8 1000SQ	Strom	660
1	Karton Abfüllmaschine Elopak Shikoku U S80A Slim	Strom	9.350
1	Aseptische System FINNAH Finamat	Strom	10.854
1	Becher - Füll - und Verschließmaschinen Hugart DS 1000	Strom	4.119
1	Becher - Füll - und Verschließmaschinen HAMBA BK 6005/5	Strom	7.637
1	Etikettier-Maschinen für Becher Sleever International LS 5	Strom	679
1	Pasteurizer TETRA PAK Multitube	Strom	46.400
1	Pasteurizer TMCI TECNINDISTRIA Four stages PHC8	Strom	7.569
1	Molkerei Abfüllmaschinen CATTA 27	Strom	13.781
1	Verschlussapplikator TETRA PAK 110 TCAP4	Strom	742
1	Verpackungsmaschine MARIANI TRM-700-LF/1	Strom	11.240
Beleuchtung			61.927
1	Beleuchtung Produktionshalle	Strom	60.814
1	Beleuchtung Werkstatt/Garage	Strom	1.105
5	Beleuchtung Zwischenlager	Strom	9
Informations- und Kommunikationstechnik			21.706
1	Internes Rechenzentrum, vmWare-Server (2 Stk)	Strom	6.264
32	PCs im Verwaltungsgebäude (Siemens Desktops)	Strom	15.442
Sonstige			2.042
22	PCs im Verwaltungsgebäude (Laptop Dell)	Strom	2.042

Kalenderjahr 2016 (zusammengefasst)


Verbraucherbereich	CO ₂ Menge [kg]
Produktionsprozesse und Anlagen	129.110
Transport	208.824
Beleuchtung	118.453
Klima- und Kälteanlagen	1.416.360
Informations- und Kommunikationstechnik	21.692
Sonstige	1.931
Strom- und Wärmeerzeugung	185.046
Summe	2.081.416

7.5 Verbraucherstrukturen im Detail

Zugeordnete Verbraucher und Verbrauch für das Jahr 2017

	Verbraucher	MWh
Anlage EDV und Peripherie	- 32 x PCs im Verwaltungsgebäude (Siemens Desktops)- 22 x PCs im Verwaltungsgebäude (Laptop Dell)	30,14
Geschäftsbereich Fuhrpark	- 7 Verbraucher in Unterstrukturen	868,89
Anlage LKW Flotte	 Milchtank-Lastwagen (MTL 1, Iveco eurotrakker 190 E 39) Milchtank-Lastwagen (MTL 2, Iveco eurotrakker 190 E 39) Milchtank-Lastwagen (MTL 3, Iveco eurotrakker 190 E 39) Milchtank-Lastwagen (MTL 5) Scania 124-400 Milchtank-Lastwagen (MTL 8) Scania 124-400 	845,59
Anlage PKW Flotte	- KFZ Vorstand (BMW 5er)- KFZ Poolfahrzeug (VW UP)	23,30
Anlage Heizung	- Heizungsanlage Verwaltung und Produktion- Heizungsanlage für Werkstatt/Garage	712,80
Geschäftsbereich Molkereiprodukte	Aseptische System FINNAH FinamatMolkerei Abfüllmaschinen CATTA 2719 Verbraucher in Unterstrukturen	2.181,92
Anlage Joghurt-Bereitung	 Becher - Füll - und Verschließmaschinen Hugart DS 1000 Becher - Füll - und Verschließmaschinen HAMBA BK 6005/5 Pasteurizer TETRA PAK Multitube Pasteurizer TMCI TECNINDISTRIA Four stages PHC8 	113,32
Anlage Kältetechnik	Kälteanlage für ZwischenlagerKälteanlage für Produktion	1.939,17
Anlage Logistik und Hygiene	- Gabelstapler GS1 Lager- Lkw-Waschgerät Steinbrückner- Reinigungs- und Desinfektionsanlage für Milchtank-LKWs	23,52
Anlage Produktion	 Karton Abfüllmaschine Elopak Shikoku U S80A Slim Etikettier-Maschinen für Becher Sleever International LS 5 Verschlussapplikator TETRA PAK 110 TCAP4 Verpackungsmaschine MARIANI TRM-700-LF/1 Tetra-Pak-Abfüllanlage TETRA PAK TBA8 1000SQ Tetra-Pak-Abfüllanlage Tetra Pak TP C3/Flex XH&DIMC Herstellungslinien für Käse ALPMA U-64/C Homogenisator ALFA LAVAL SHL 25A ELMAG Druckluft Kompressor LKW-Werkstatt EUROAIR 410/10/50 D Hebebühne 	63,44
Geschäftsbereich Verwaltung	- 5 Verbraucher in Unterstrukturen	597,57
Anlage Beleuchtung	Beleuchtung ProduktionshalleBeleuchtung Werkstatt/Garage5 x Beleuchtung Zwischenlager	106,77
Anlage Serverraum	- Internes Rechenzentrum, vmWare-Server (2 Stk) - Internes Rechenzentrum, Kühlanlage	490,80
Summe		4.391,32

powered by

2 Nutzwärme / BHKW

1 Benzin E10

3 Heizöl (EL)4 Diesel

14 ■ Kältetechnik15 ■ Joghurt-Bereitung16 ■ LKW Flotte

9 Molkereiprodukte

12 Beleuchtung

10 Fuhrpark
11 Produktion

13 ■ Serverraum

5 Erdgas
6 Strom
7 Heizung
8 Verwaltung

7.6 Hinterlegte Dokumente

Тур	Name	Datei
Anlage	Heizung	TÜV Heizung.ods
Energiebezug	Strom (2015)	Lastgang
Energiebezug	Strom (2015)	EnergieAbrechnungEnBW.ods
Energiebezug	Erdgas (2015)	Erdgas und Heizölliefervertrag.ods
Energiebezug	Heizöl (EL) (2015)	Erdgas und Heizölliefervertrag.ods
Energiebezug	Diesel (2015)	Kostenaufstellung Treibstoffbezug.ods
Energiebezug	Benzin E10 (2015)	Erdgas und Heizölliefervertrag.ods
Gebäude	Verwaltungsgebäude	alias_mapping.csv
Verbrauch	Milchtank-Lastwagen (MTL 2, Iveco eurotrakker 190 E 39) (2015)	Treibstoffverbrauch LKW 2.ods
Verbrauch	Milchtank-Lastwagen (MTL 3, Iveco eurotrakker 190 E 39) (2015)	Treibstoffverbrauch LKW 3.ods
Verbrauch	Milchtank-Lastwagen (MTL 5) Scania 124-400 (2015)	Treibstoffverbrauch LKW 4.ods
Verbrauch	Milchtank-Lastwagen (MTL 8) Scania 124-400 (2015)	Treibstoffverbrauch LKW 5.ods
Maßnahmen	Routenoptimierung durch neue Logistik-Software	Kostenaufstellung Treibstoffbezug.ods
Maßnahmen	Einbau von wärmegedämmten Rolltoren	TÜV Heizung.ods

Vielen Dank für Ihr Interesse an unseren Musterberichten von energiesparbericht.de. Da für die Erstellung hochwertiger Energieberichte der Nachweis der einzelnen Verbräuche durch entsprechende Messungen immer wichtiger wird, möchten wir Sie an dieser Stelle gerne auf enerchart aufmerksam machen, unser Premiumprodukt für kontinuierliches Monitoring und Energiedatenmanagement.

Die herausragendsten Eigenschaften von enerchart sind:

- Sichere, hochskalierbare Softwarearchitektur
- Hohe Integrationsfähigkeit
- Vollständig internationalisiert
- Multi-level Mandanten-fähig
- Komplett Geräte- und System-unabhängig
- Datenquellen einfach erweiterbar (Treiber-Konzept)
- Funktional erweiterbar über Module
- OEM-fähig
- Als Kauflizenz (OnPremise) verfügbar
- Als SaaS über store.krumedia.com verfügbar

Weitere Informationen finden Sie unter www.enerchart.com

© Copyright krumedia GmbH Rommelstraße 1 76227 Karlsruhe GERMANY www.krumedia.com